Markus Heinonen, PhD
Research Scientist
Basis
, New York, USA
Research experience
2015-2025: Research fellow at Aalto University (Finland) working on genAI, dynamical systems, Bayesian learning.
2013-2014: Postdoc at TeleCom ParisTech (France) working with Prof.
Florence d'Alché-Buc
on Gaussian processes, kernel methods and dynamics.
2008-2012: PhD at University of Helsinki (Finland) working with Prof.
Juho Rousu
on kernel methods for metabolomics.
Research interests
Bayesian deep learning
Generative modelling: diffusion, normalizing flows
Learning dynamics: ODEs, SDEs, PDEs
Uncertainty, calibration, priors, model selection, Gaussian processes
Bioinformatics: metabolites, proteins, genomes, drugs
Advice
to machine learning PhD students
markus.heinonen@gmail.com
Google Scholar
arXiv
Github
LinkedIn
CV
Publications
preprints
Deep latent variable modelling reveals clinically significant subgroups among transfusion recipients
Elissa Peltola, Esa Turkulainen,
Markus Heinonen
, Mikko Arvas, Minna Ilmakunnas, Miika Koskinen
medRxiv
(2025)
Let Physics Guide Your Protein Flows: Topology-aware Unfolding and Generation
Yogesh Verma,
Markus Heinonen
, Vikas Garg
arxiv
(2025)
Scaling Laws for Uncertainty in Deep Learning
Mattia Rosso, Simone Rossi, Giulio Franzese,
Markus Heinonen
, Maurizio Filippone
arxiv
(2025)
Spacetime Geometry of Denoising in Diffusion Models
Rafal Karczewski,
Markus Heinonen
, Alison Pouplin, Soren Hauberg, Vikas Garg
arxiv
(2025)
Repulsive Ensembles for Bayesian Inference in Physics-informed Neural Networks
Philipp Pilar,
Markus Heinonen
, Niklas Wahlström
arxiv
(2025)
Optimizing Data Augmentation through Bayesian Model Selection
Madi Matymov, Ba-Hien Tran, Michael Kampffmeyer,
Markus Heinonen
, Maurizio Filippone
arxiv
(2025)
2025
70.
VitroBERT: Modeling DILI by pretraining BERT on in vitro data
Arslan Masood, Anamya Nagaraja, Katia Belaid, Natalie Mesens, Hugo Ceulemans, Samuel Kaski, Dorota Herman,
Markus Heinonen
J Chemoinformatics
(2025) (to appear)
69.
Gaussian Processes with Bayesian Inference of Covariate Couplings
Mattia Rosso, Juho Ylä-Jääski, Zheyang Shen,
Markus Heinonen
, Maurizio Filippone
TMLR
(2025)
68.
Multi-target property prediction and optimization using latent spaces of generative model
Anirudh Jain,
Markus Heinonen
, Heikki Käsnänen, Julius Sipilä and Samuel Kaski
Machine Learning: Science and Technology
(2025)
67.
Progressive Tempering Sampling with Diffusion
Severi Rissanen, RuiKang OuYang, Jiajun He, Wenlin Chen,
Markus Heinonen
, Arno Solin, José Miguel Hernández-Lobato
ICML
(2025)
66.
Devil is in the Details: Density Guidance for Detail-Aware Generation with Flow Models
Rafal Karczewski,
Markus Heinonen
, Vikas Garg
ICML
(2025)
65.
Single-cell analysis of aplastic anemia reveals a convergence of NK and NK-like CD8+ T cells with a disease-associated TCR signature
Sofie Lundgren, Jani Huuhtanen, ... , Satu Mustjoki
Science Translational Medicine
17 (2025)
64.
From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport
Quentin Bouniot, Ievgen Redko, Anton Mallasto, Charlotte Laclau, Karol Arndt, Oliver Struckmeier,
Markus Heinonen
, Ville Kyrki, Samuel Kaski
CVPR
(2025)
63.
Diffusion Models as Cartoonists! The Curious Case of High Density Regions
Rafal Karczewski,
Markus Heinonen
, Vikas Garg
ICLR
(2025)
62.
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Severi Rissanen,
Markus Heinonen
, Arno Solin
ICLR
(2025)
61.
Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models
Najwa Laabid, Severi Rissanen,
Markus Heinonen
, Arno Solin, Vikas Garg
ICLR
(2025)
60.
E(3)-equivariant models cannot learn chirality: Field-based molecular generation
Alexandru Dumitrescu, Dani Korpela,
Markus Heinonen
, Yogesh Verma, Valerii Iakovlev, Vikas Garg, Harri Lähdesmäki
ICLR
(2025)
59.
What Ails Generative Structure-based Drug Design: Too Little or Too Much Expressivity?
Rafał Karczewski, Samuel Kaski,
Markus Heinonen
, Vikas Garg
AISTATS
(2025)
Oral presentation (top 2%)
58.
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
, Ba-Hien Tran, Michael Kampffmeyer, Maurizio Filippone
AISTATS
(2025)
57.
Probabilistic analysis of spatial viscoelastic cues in 3D cell culture using magnetic microrheometry
Ossi Arasalo, Arttu Lehtonen, Mari Kielosto,
Markus Heinonen
, Juho Pokki
Biophysical J
(2025)
2024
56.
Human-in-the-loop Active Learning for Goal-oriented Molecule Generation
Yasmine Nahal, Janosch Menke, Julien Martinelli,
Markus Heinonen
, Mikhail Kabeshov, Jon Paul Janet, Eva Nittinger, Ola Engkvist, Samuel Kaski
J Chemoinformatics
(2024)
55.
Improving robustness to corruptions with multiplicative weight perturbations
Trung Trinh,
Markus Heinonen
, Luigi Acerbi, Samuel Kaski
NeurIPS
(2024)
Spotlight presentation (top 8%)
54.
ClimODE: Climate Forecasting With Physics-informed Neural ODEs
Yogesh Verma,
Markus Heinonen
, Vikas Garg
ICLR
(2024)
Oral presentation (top 4%)
53.
Input-gradient space particle inference for neural network ensembles
Trung Trinh,
Markus Heinonen
, Luigi Acerbi, Samuel Kaski
ICLR
(2024)
Spotlight presentation (top 16%)
2023
52.
Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States
Valerii Iakovlev,
Markus Heinonen
, Harri Lähdesmäki
NeurIPS
(2023)
51.
Continuous-Time Functional Diffusion Processes
Giulio Franzese, Giulio Corallo, Simone Rossi,
Markus Heinonen
, Maurizio Filippone, Pietro Michiardi
NeurIPS
(2023)
50.
Chemistry-based modelling on phenotype-based drug-induced liver injury annotation: from public to proprietary data
Mohammad Moein,
Markus Heinonen
, Natalie Mesens, Ronnie Chamanza, Chidozie Amuzie, Yvonne Will, Hugo Ceulemans, Samuel Kaski, Dorota Herman
Chemical Research in Toxicology
(2023)
49.
Learning representations that are closed-form Monge mapping optimal with application to domain adaptation
Oliver Struckmeier, Ievgen Redko, Anton Mallasto, Karol Arndt,
Markus Heinonen
, Ville Kyrki
TMLR
(2023)
48.
Uncertainty-Aware Natural Language Inference with Stochastic Weight Averaging
Aarne Talman, Hande Celikkanat, Sami Virpioja,
Markus Heinonen
, Jörg Tiedemann
NoDaLiDa
(2023)
47.
AbODE: Ab initio antibody design using conjoined ODEs
Yogesh Verma,
Markus Heinonen
, Vikas Garg
ICML
(2023)
46.
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
Magnus Ross,
Markus Heinonen
TMLR
(2023)
45.
Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach
Vishnu Raj, Tianyu Cui,
Markus Heinonen
, Pekka Marttinen
AISTATS
(2023)
44.
Latent Neural ODEs with Sparse Bayesian Multiple Shooting
Valerii Iakovlev, Cagatay Yildiz,
Markus Heinonen
, Harri Lähdesmäki
ICLR
(2023)
43.
Generative Modelling With Inverse Heat Dissipation
Severi Rissanen,
Markus Heinonen
, Arno Solin
ICLR
(2023)
2022
42.
Human-in-the-loop assisted de novo molecular design
Iiris Sundin, Alexey Voronov, Haoping Xiao, Kostas Papadopoulos, Esben Bjerrum, Markus Heinonen, Atanas Patronov, Samuel Kaski, Ola Engkvist
J Chemoinformatics
(2022)
41.
TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs
Emmi Jokinen, Alexandru Dumitrescu, Jani Huuhtanen, Vladimir Gligorijevic, Satu Mustjoki, Richard Bonneau,
Markus Heinonen
, Harri Lähdesmäki
Bioinformatics
(2022)
40.
Modular Flows: Differential Molecular Generation
Yogesh Verma, Samuel Kaski,
Markus Heinonen
, Vikas Garg
NeurIPS
(2022)
39.
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh,
Markus Heinonen
, Luigi Acerbi, Samuel Kaski
ICML
(2022)
Oral presentation (top 10%)
38.
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde, Cagatay Yildiz, Harri Lähdesmäki, Samuel Kaski,
Markus Heinonen
UAI
(2022)
37.
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev, Henri Pesonen,
Markus Heinonen
, Jukka Corander, Samuel Kaski
Computational Statistics and Data Analysis
(2022)
36.
Modeling binding specificities of transcription factor pairs with random forests
Anni Antikainen,
Markus Heinonen
, Harri Lähdesmäki
BMC Bioinformatics
(2022)
2021
35.
Prediction and impact of personalized donation intervals
Jarkko Toivonen, Yrjö Koski, Esa Turkulainen, Femmeke Prinsze, Pietro della Briotta Parolo,
Markus Heinonen
, Mikko Arvas
Vox Sanguinis
(2021)
34.
De-randomizing MCMC dynamics with the diffusion Stein operator
Zheyang Shen,
Markus Heinonen
, Samuel Kaski
NeurIPS
(2021)
33.
Bayesian Inference for Optimal Transport with Stochastic Cost
Anton Mallasto,
Markus Heinonen
, Samuel Kaski
ACML
(2021)
32.
Continuous-Time Model-Based Reinforcement Learning
Çağatay Yıldız,
Markus Heinonen
, Harri Lähdesmäki
ICML
(2021)
31.
Predicting recognition between T cell receptors and epitopes with TCRGP
Emmi Jokinen,
Markus Heinonen
, Jani Huuhtanen, Satu Mustjoki, Harri Lähdesmäki
PLOS Computational Biology
(2021)
30.
Learning continuous-time PDEs from sparse data with graph neural networks
Valerii Iakovlev,
Markus Heinonen
, Harri Lähdesmäki
ICLR
(2021)
29.
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi,
Markus Heinonen
, Edwin Bonilla, Zheyang Shen, Maurizio Filippone
AISTATS
(2021)
2020
28.
Substrate specificity of 2-Deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods
Sanni Voutilainen,
Markus Heinonen
, Martina Andberg, Emmi Jokinen, Hannu Maaheimo, Johan Pääkkönen, Nina Hakulinen, Juha Rouvinen, Harri Lähdesmäki, Samuel Kaski, Juho Rousu, Merja Penttilä, Anu Koivula
Applied Microbiology and Biotechnology
(2020)
Sample-efficient reinforcement learning using deep Gaussian processes
Charles Gadd,
Markus Heinonen
, Harri Lähdesmäki, Samuel Kaski
Technical report
(2020)
Scalable Bayesian neural networks by layer-wise input augmentation
Trung Trinh, Samuel Kaski,
Markus Heinonen
Technical report
(2020)
27.
Learning spectrograms with convolutional spectral kernels
Zheyang Shen,
Markus Heinonen
, Samuel Kaski
AISTATS
(2020)
2019
26.
ODE
2
VAE: Deep generative second order ODEs with Bayesian neural networks
Cagatay Yildiz,
Markus Heinonen
, Harri Lähdesmäki
NIPS
(2019)
25.
Deep Convolutional Gaussian Processes
Kenneth Blomqvist, Samuel Kaski,
Markus Heinonen
ECML/PKDD
(2019)
24.
Bayesian Metabolic Flux Analysis reveals intracellular flux couplings
Markus Heinonen
, Maria Osmala, Henrik Mannerström, Janne Wallenius, Samuel Kaski, Juho Rousu, Harri Lähdesmäki
ISMB/ECCB
(2019)
23.
Deep learning with differential Gaussian process flows
Pashupati Hegde,
Markus Heinonen
, Harri Lähdesmäki, Samuel Kaski
AISTATS
(2019)
Notable paper award (top 1%)
22.
Harmonizable mixture kernels with variational Fourier features
Zheyang Shen,
Markus Heinonen
, Samuel Kaski
AISTATS
(2019)
2018
21.
Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching
Cagatay Yildiz,
Markus Heinonen
, Jukka Intosalmi, Henrik Mannerström, Harri Lähdesmäki
MLSP
(2018)
20.
Learning unknown ODE models with Gaussian processes
Markus Heinonen
, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, Harri Lähdesmäki
ICML
(2018)
19.
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde,
Markus Heinonen
, Samuel Kaski
UAI
(2018)
ZIGP
GPRN
Neural Non-Stationary Spectral Kernel
Sami Remes,
Markus Heinonen
, Samuel Kaski Technical report (2018)
18.
Temporal clustering analysis of endothelial cell gene expression following exposure to a conventional radiotherapy dose fraction using Gaussian process clustering
Markus Heinonen
, Fabien Milliat, Mohamed Benadjaoud, Agnès François, Valérie Buard, Georges Tarlet, Florence d’Alché-Buc, Olivier Guipaud
PLOS ONE
(2018)
17.
Learning with multiple pairwise kernels for drug bioactivity prediction
Anna Cichonska, Tapio Pahikkala, Sandor Szedmak, Heli Julkunen, Antti Airola, Markus Heinonen, Tero Aittokallio, Juho Rousu
Bioinformatics
(2018)
16.
mGPfusion: Predicting protein stability changes with Gaussian process kernel learning and data fusion
Emmi Jokinen,
Markus Heinonen
, Harri Lähdesmäki
Bioinformatics
(2018)
15.
Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity Upon Mutation
Kyle Barlow, Shane Conchuir, Samuel Thompson, Pooja Suresh, James Lucas, Markus Heinonen, Tanja Kortemme
J Physical Chemistry B
(2018)
2017
14.
A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings
Sami Remes,
Markus Heinonen
, Samuel Kaski
ACML
(2017)
13.
Non-Stationary Spectral Kernels
Sami Remes,
Markus Heinonen
, Samuel Kaski
NIPS
(2017)
2016
12.
Random Fourier Features for operator-valued kernels
Romain Brault,
Markus Heinonen
, Florence d'Alche-Buc
ACML
(2016)
11.
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Markus Heinonen
, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki
AISTATS
(2016)
10.
Genome wide analysis of protein production load in Trichoderma reesei
Tiina Pakula, Heli Nygren, Dorothee Barth,
Markus Heinonen
, Sandra Castillo, Merja Penttilä, Mikko Arvas
Biotechnology for Biofuels
(2016)
2015
9.
Detecting time periods of differential gene expression using Gaussian processes: An application to endothelial cells exposed to radiotherapy dose fraction
Markus Heinonen
, Olivier Guipaud, Fabien Milliat, Valerie Buard, Beatrice Micheau, Georges Tarlet, Marc Benderittter, Farida Zehraoui, Florence d'Alche-Buc
Bioinformatics
(2015)
2014
Learning nonparametric differential equations with operator-valued kernels and gradient matching
Markus Heinonen
, Florence d'Alche-Buc
Technical report
(2014)
2013
Time-dependent gaussian process regression and significance analysis for sparse time-series
Markus Heinonen
, Olivier Guipaud, Fabien Milliat, Valerie Buard, Beatrice Micheau, Florence d'Alche-Buc
Machine Learning in Systems Biology
(2013)
8.
Metabolite Identification trough Machine Learning -- Tackling CASMI Challenge using FingerID
Huibin Shen, Nicola Zamboni,
Markus Heinonen
, Juho Rousu
Metabolites
(2013)
2012
Full waveform forward seismic modeling of geologically complex environment: Comparison of simulated and field seismic data
Suvi Heinonen,
Markus Heinonen
and Emilia Koivisto
EGU General Assembly
(2012)
7.
Metabolite identification and fingerprint prediction via machine learning
Markus Heinonen
, Huibin Shen, Nicola Zamboni, Juho Rousu
Bioinformatics
(2012)
6.
Efficient path kernels for reaction function prediction
Markus Heinonen
, Niko Välimäki, Veli Mäkinen, Juho Rousu
International Conference on Bioinformatics Models, Methods and Algorithms
(2012)
2011
5.
Computing atom mappings for biochemical reactions without subgraphs isomorphism
Markus Heinonen
, Sampsa Lappalainen, Taneli Mielikäinen, Juho Rousu
J Computational Biology
(2011)
2010
4.
Structured output prediction of anti-cancer drug activity
Hongyu Su,
Markus Heinonen
, Juho Rousu
Pattern Recognition in Bioinformatics
(2010)
3.
Multilabel Classification of Drug-like Molecules via Max-margin Conditional Random Fields
Hongyu Su,
Markus Heinonen
, Juho Rousu
Probabilistic Graphical Models
(2010)
2008
2.
FiD: a software for
ab initio
structural identification of product ions from tandem mass spectrometric data
Markus Heinonen
, Ari Rantanen, Taneli Mielikäinen, Juha Kokkonen, Jari Kiuru, Raimo Ketola, Juho Rousu
Rapid Communications in Mass Spectrometry
(2008)
2006
1.
Ab initio
prediction of molecular fragments from tandem mass spectrometry data
Markus Heinonen
, Ari Rantanen, Taneli Mielikäinen, Esa Pitkänen, Juha Kokkonen, Juho Rousu
German Conference on Bioinformatics
(2006)
Plain Academic