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TL:DR

= \We propose Free Hunch (FH): a training-free method to estimate
denoiser covariances in diffusion models.

= FH combines data covariances and trajectory curvature to provide
accurate guidance.

= FH enables strong results in conditional generation tasks like image
deblurring, even with few solver steps.

Background

steps, but accurate covariance estimates matter more for small step counts.
= The diffusion model score conditional on a condition y can be

composed as: Method
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Figure 2. Comparison of different conditional diffusion methods for deblurring, with a low number of solver steps (15 Heun iterations). DPS [?] and TIGDM [?] work well with many

Results

Vi logp(x;|y) = Vy, log p(x;) + Vi, log p(y | %), (1)

" the conditional score can be calculated with: = Time updates: Approximately transfer estimates across noise levels with a

Vi log p(y | %) = Vi, log [ ply | x0) plaxo | %) dxy = Vi, log By, ) [p(y | x0)].  second-order approximation on log p(x).
—_———— = Space updates: BFGS-style low-rank updates during sampling.

constraint  denoise

* FH estimates Cov|x( | x¢] using:

(2) = Efficient structure:
= X =D+ UU" —VV' (diagonal + low-rank)

= The posterior is difficult. Common approach: Gaussian , ,
. p(xo | xi) PP = No retraining. No Jacobians. Works with any sampler.

p(x0 | %) = N (%0 | po)¢(%4), Lo j(x¢)). The mean comes from the

denoiser, but the covariance is hard. " [nitialized using DCT-diagonal data covariances.

= Existing methods require extra training or approximations (heuristics,

Jacobians). 0O Directly measurable during sampling
= Free Hunch estimates covariance from: {0 Online estimate available
= Data covariance (from training samples) T . .
: ; : . O Obt d with low-rank updat
= Curvature along the generative trajectory (via Tweedie) HACE WL IOWAAIR BPEEE 1 [#od ()
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Figure 1. (a) A distribution p(xg) represented by a pretrained diffusion model, and a T
Gaussian likelihood p(y | xg). (b) The (exact) posterior p(xq|y) ~ p(x0)p(y | x0).

(c) Generated samples from a model with a heuristic diagonal denoiser covariance

>y +(x¢), and a generative ODE trajectory with approximated p(xy | x;) shapes
represented as ellipses along the trajectory. (d) Generated samples with our denoiser
covariance.

Figure 3. Sketch of our method during sampling.

International Conference on Learning Representations (ICLR 2025) — Singapore

Condition Forward DPS IIGDM TMPD Peng (Convert) FH (Ours) FH +Online (Ours)

Inpainting  Motion Blur Gaussian Blur

Figure 4. Qualitative examples using the 15-step Heun sampler for image restoration
methods for deblurring (Gaussian), inpainting (random) and deblurring (motion).

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4 X)
PSNR1T SSIM1T LPIPS| PSNRT SSIM1T LPIPS| PSNRT SSIM1T LPIPS| PSNRT SSIMT LPIPS|
DPS 1994 0444  0.572 20.68 0494 0.574 17.02 0.354 0.646 19.85 0460  0.590
IIGDM 2029 0474 0.574 19.87  0.468 0.598 19.21 0429  0.602 20.17 0474  0.582
TMPD 2256  0.572  0.486 1770  0.447  0.589 20.40  0.481 0.567 21.15 0.517  0.541

Peng Convert 2253 0563 0490 2223 0579 0489 2046 0475 0556 2192 0541 0517
Peng Analytic =~ 22.52 0.563 0490 22.14 0574 0494 2046 0475 0556 2192 0541  0.517

15 steps

DDNM+ 7.21 0.029 0822 2395 0.667 0.352 — — — 24.30 0.669 0.398
DiffPIR 22777 0575  0.403 16.10 0.284  0.661 19.75 0381  0.527 21.76 0540  0.436
Identity 2291 0594  0.384 1883 0397 0590  20.06 0393 0506 2265 0.589 0412
Identity+online 23.08  0.606  0.385 1886 0.397 0590 2031 0418 0492 2276 0.597 0414
FH 23.41 0.625 0.373 24.76 0.702 0.327 21.69 0.534 0.447 23.39 0.632 0.390
FH+online 23.57 0.635 0.378 25.29 0.731 0.315 21.83 0.548 0.442 2331 0.624 0.393

Figure 5. Results with the Euler solver. Our model performs especially well at small
step sizes and remains competitive at larger step counts as well.
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