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TL;DR

We propose Free Hunch (FH): a training-free method to estimate

denoiser covariances in diffusion models.

FH combines data covariances and trajectory curvature to provide

accurate guidance.

FH enables strong results in conditional generation tasks like image

deblurring, even with few solver steps.

Background

The diffusion model score conditional on a condition y can be

composed as:

∇xt
log p(xt | y) = ∇xt

log p(xt) + ∇xt
log p(y | xt), (1)

the conditional score can be calculated with:

∇xt
log p(y | xt) = ∇xt

log
∫

p(y | x0)︸ ︷︷ ︸
constraint

p(x0 | xt)︸ ︷︷ ︸
denoise

dx0 = ∇xt
logEp(x0 | xt)

[
p(y | x0)

]
.

(2)

The posterior p(x0 | xt) is difficult. Common approach: Gaussian

p(x0 | xt) ≈ N (x0 | µ0 | t(xt), Σ0 | t(xt)). The mean comes from the

denoiser, but the covariance is hard.

Existing methods require extra training or approximations (heuristics,

Jacobians).

Free Hunch estimates covariance from:
Data covariance (from training samples)

Curvature along the generative trajectory (via Tweedie)

Accurate covariance ⇒ better guidance ⇒ better results.
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Figure 2: (a) A distribution p(x0) represented by a pretrained diffusion model, and a Gaussian like-
lihood p(y |x0). (b) The (exact) posterior p(x0 |y) ∼ p(x0)p(y |x0). (c) Generated samples from
a model with a heuristic diagonal denoiser covariance Σ0 | t(xt), and a generative ODE trajectory
with approximated p(x0 |xt) shapes represented as ellipses along the trajectory. (d) Generated sam-
ples with our denoiser covariance.

information is, in fact, freely available from the training data and the generative process itself. FH
significantly improves accuracy over baselines, it is directly applicable to all standard diffusion mod-
els and does not require significant additional compute. This is achieved by integrating two sources
of information into a unified framework: (i) the covariance of the data distribution and (ii) the im-
plicit covariance information available in the denoiser evaluations along the generative trajectory
itself. We apply the method to linear inverse problems, where we show mathematically that ac-
curate covariance estimates are crucial for unbiased conditional generation, and achieve significant
improvements over recent methods (see ??). In summary, our contributions are:

• Methodological: We propose a novel, efficient method for estimating denoiser covariances in
diffusion models. It (i) does not require additional training, (ii) avoids the need for expensive score
Jacobian computations, (iii) adapts to the specific input and noise level, and (iv) is applicable to
all standard diffusion models.

• Analytical: We give a theoretical analysis of why accurate covariance estimation is crucial for
reconstruction guidance in linear inverse problems.

• Practical: Our improved covariance estimates result in significant improvements over baselines
in linear inverse problems, especially with small diffusion step counts.

2 BACKGROUND

Diffusion models are a powerful framework for generative modelling. Given a data distribution
p(x0), we consider the following sequence of marginal distributions:

p(xt) =

∫
N (xt |x0, σ(t)

2I)p(x0) dx0, (1)

and corresponding reverse processes (??)

Reverse SDE: dxt = −2σ̇(t)σ(t)∇xt
log p(xt) dt+

√
2σ̇(t)σ(t) dωt, (2)

PF-ODE: dxt = −σ̇(t)σ(t)∇xt log p(xt) dt. (3)

Here, the σ̇(t) = d
dtσ(t) and ωt is a Brownian motion. The score ∇xt

log p(xt) can be learned
through score matching methods (???). Starting at a sample xt ∼ N (xt |x0, σ

2
maxI) at a suffi-

ciently high σmax and integrating either differential equation backwards in time, we recover the data
distribution p(x0) if the score is accurate.

In conditional generation, we need to define the conditional score

∇xt
log p(xt |y) = ∇xt

log p(xt) +∇xt
log p(y |xt), (4)

which decomposes into an unconditional score and the conditional adjustment through Bayes’ rule.
If we train a classifier to estimate the condition y given the noisy images xt, we get classifier
guidance (??). Using additional training compute for each conditioning task, however, may be

2

Figure 1. (a) A distribution p(x0) represented by a pretrained diffusion model, and a

Gaussian likelihood p(y | x0). (b) The (exact) posterior p(x0 | y) ∼ p(x0)p(y | x0).
(c) Generated samples from a model with a heuristic diagonal denoiser covariance

Σ0 | t(xt), and a generative ODE trajectory with approximated p(x0 | xt) shapes
represented as ellipses along the trajectory. (d) Generated samples with our denoiser

covariance.
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Figure 2. Comparison of different conditional diffusion methods for deblurring, with a low number of solver steps (15 Heun iterations). DPS [?] and ΠGDM [?] work well with many

steps, but accurate covariance estimates matter more for small step counts.

Method

FH estimates Cov[x0 | xt] using:
Time updates: Approximately transfer estimates across noise levels with a

second-order approximation on log p(xt).
Space updates: BFGS-style low-rank updates during sampling.

Efficient structure:
Σ = D + UU> − V V > (diagonal + low-rank)

No retraining. No Jacobians. Works with any sampler.

Initialized using DCT-diagonal data covariances.
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the observation. The methods by ??? frame conditional generation and inverse problems with a
Bayesian filtering perspective, giving asymptotic guarantees with increasing compute.

Other applications of Hessians and denoiser covariances ? demonstrate that Gaussian approx-
imation of p(x0 |xt) enables compositional generation between diffusion models. Higher-order
ODE solvers leverage the Hessian ∇2

xt
log p(xt) for efficient sampling (?), while ? use it for causal

discovery. ? improved model likelihoods by explicitly matching higher-order score gradients. ?
identified the Hessian as equivalent to Fisher information for measuring step informativeness in
conditional generation. Recent advances include efficient Hessian computation using training data
(?) and unsupervised audio editing via perturbing generation along denoiser covariance principal
components (?).

3 METHODS
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Σ0 | t+∆t(x+∆x)

p(x, t) ≈
N (x |m(x, t),C(x, t))

Directly measurable during sampling
Online estimate available
Obtained with Gaussian approx.
Obtained with low-rank update
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Figure 3: Sketch of our method during sampling.

We present our framework for incorporating
prior data covariance information with curva-
ture information observed during sampling. We
define µ0 | t(xt) and Σ0 | t(xt) as our approxi-
mations of E[x0 |xt] and Cov[x0 |xt] at time t
and location x. As we move from point (x, t)
to (x + ∆x, t + ∆t) in the diffusion process,
the denoiser covariance changes but remains
similar for small steps. We develop methods
to transfer this information across time steps
(??), incorporate additional curvature informa-
tion (??), and combine these updates (??). For
high-dimensional data, we propose an efficient
algorithm using diagonal and low-rank struc-
tures (??). We discuss covariance initializa-
tion (??) and introduce reconstruction guidance
with a linear-Gaussian observation model (??). Finally, we analyze why diagonal denoiser covari-
ance overestimates guidance for correlated data at large diffusion times and demonstrate this issue
with image data, showing that the problem is resolved with correct covariance estimation (??).

Notation In the following, we interchangeably use p(x, t) in place of p(xt) where we want to
emphasise the possibility to change either x or t, but not the other. However, in contexts where we
talk about the posterior, we use p(xt) and p(x0 |xt) to emphasise the difference between the two
random variables x0 and xt.

3.1 TIME UPDATE

Our goal is to obtain the evolution of the denoiser moments µ0 | t+∆t(xt) and Σ0 | t+∆t(xt) (????).
The evolution of the moments under the diffusion process is characterised by the Fokker–Planck
equation, and in practise intractable. We approximate the evolution with a second-order Taylor
expansion of log p(xt) around point xt, which leads to a Gaussian form for p(xt):

p(x′
t) ≈ N

(
x′
t |m(xt, t),C(xt, t)

)
, (9)

where (temporarily dropping out the subscript from xt for clarity)

m(x, t) = x−∇2
x log p(x, t)−1∇x log p(x, t), (10)

C(x, t) = −[∇2
x log p(x, t)]−1. (11)

The evolution of the Gaussian (??) under the linear forward SDE (??) has a closed form (?). With
the forward process induced by ??, this results in

m(x, t+∆t) = m(x, t), (12)

C(x, t+∆t) = C(x, t) + ∆σ2I, (13)
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Figure 3. Sketch of our method during sampling.

Results
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Table 1: Comparison of image restoration methods for 15- and 30-step Heun iterations for deblurring
(Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks. Our method
(FH) excels overall, especially in the descriptive LPIPS metric. The top scores per category are
bolded, with runners-up underlined. Close scores share rankings.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.30 0.475 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 23.08 0.597 0.420 18.99 0.481 0.539 20.80 0.491 0.514 21.88 0.545 0.476
Peng (Convert) 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng (Analytic) 22.53 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.39 0.624 0.372 24.73 0.701 0.327 21.69 0.534 0.446 23.30 0.624 0.390
FH+online 23.54 0.634 0.378 25.25 0.728 0.317 21.84 0.549 0.441 23.39 0.632 0.394

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.387 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.16 0.508 0.503 22.11 0.553 0.478
TMPD 23.16 0.602 0.415 18.85 0.481 0.537 20.91 0.500 0.507 21.94 0.549 0.472
Peng (Convert) 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.22 0.608 0.430
Peng (Analytic) 23.61 0.626 0.405 23.59 0.640 0.411 21.99 0.552 0.463 23.21 0.608 0.430

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.55 0.630 0.353 26.00 0.757 0.256 21.80 0.538 0.411 23.38 0.623 0.372
FH+online 23.62 0.635 0.358 26.18 0.767 0.268 21.88 0.547 0.410 23.44 0.628 0.375

Condition Forward DPS ΠGDM TMPD Peng (Convert) FH (Ours) FH +Online (Ours)
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Figure 7: Qualitative examples using the 15-step Heun sampler for image restoration methods for
deblurring (Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks.
Quantitative metrics in ??. Our method manages to restore the corrupted (‘Forward’) to match well
with the original (‘Condition’).
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Figure 4. Qualitative examples using the 15-step Heun sampler for image restoration

methods for deblurring (Gaussian), inpainting (random) and deblurring (motion).
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Table 2: Results with the Euler solver. Our model performs especially well at small step sizes and
remains competitive at larger step counts as well. DDNM+ is designed to enforce consistency with
the measurement in cases where the measurement operator has a clearly defined nullspace, such as
inpainting and super-resolution, potentially affecting the good PSNR and SSIM results there. In
contrast, DDNM+ struggles with our Gaussian blur kernels. Motion blur results are not presented,
as the code of DDNM+ assumes separable kernels.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.29 0.474 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 22.56 0.572 0.486 17.70 0.447 0.589 20.40 0.481 0.567 21.15 0.517 0.541
Peng Convert 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng Analytic 22.52 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517
DDNM+ 7.21 0.029 0.822 23.95 0.667 0.352 – – – 24.30 0.669 0.398
DiffPIR 22.77 0.575 0.403 16.10 0.284 0.661 19.75 0.381 0.527 21.76 0.540 0.436

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.41 0.625 0.373 24.76 0.702 0.327 21.69 0.534 0.447 23.39 0.632 0.390
FH+online 23.57 0.635 0.378 25.29 0.731 0.315 21.83 0.548 0.442 23.31 0.624 0.393

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.386 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.15 0.508 0.503 22.11 0.552 0.479
TMPD 22.92 0.591 0.451 18.27 0.465 0.563 20.71 0.495 0.538 21.59 0.536 0.507
Peng Convert 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.21 0.608 0.430
Peng Analytic 23.61 0.627 0.405 23.59 0.640 0.410 21.99 0.552 0.463 23.22 0.608 0.430
DDNM+ 7.51 0.033 0.814 26.66 0.769 0.272 – – – 24.09 0.657 0.418
DiffPIR 22.34 0.552 0.404 15.94 0.262 0.667 19.38 0.368 0.523 21.25 0.512 0.443

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.56 0.630 0.353 26.00 0.758 0.255 21.79 0.537 0.410 23.38 0.624 0.371
FH+online 23.66 0.636 0.359 26.17 0.766 0.268 21.89 0.548 0.409 23.46 0.629 0.375

50
st

ep
s

DPS 22.66 0.579 0.411 26.31 0.761 0.297 19.05 0.428 0.537 23.79 0.642 0.375
ΠGDM 22.64 0.577 0.434 21.67 0.536 0.484 21.56 0.526 0.468 22.48 0.571 0.442
TMPD 23.09 0.600 0.434 18.50 0.472 0.551 20.83 0.500 0.524 21.76 0.543 0.492
Peng Convert 23.81 0.638 0.377 24.75 0.698 0.346 22.30 0.567 0.430 23.44 0.622 0.400
Peng Analytic 23.81 0.638 0.378 24.47 0.683 0.360 22.30 0.567 0.430 23.44 0.622 0.400
DDNM+ 7.83 0.038 0.806 27.15 0.771 0.301 – – – 24.05 0.655 0.424
DiffPIR 22.10 0.539 0.407 15.82 0.251 0.670 19.17 0.358 0.525 21.00 0.498 0.448

Identity 23.18 0.602 0.360 19.64 0.436 0.536 19.92 0.373 0.497 23.11 0.600 0.385
Identity+online 23.47 0.620 0.370 19.46 0.409 0.552 20.74 0.453 0.453 23.20 0.607 0.399
FH 23.43 0.622 0.348 25.94 0.760 0.238 21.56 0.523 0.406 23.21 0.614 0.366
FH+online 23.59 0.631 0.353 26.08 0.770 0.252 21.71 0.534 0.406 23.33 0.620 0.369

10
0

st
ep

s

DPS 23.36 0.615 0.379 26.61 0.800 0.229 20.05 0.473 0.492 23.36 0.622 0.366
ΠGDM 22.76 0.585 0.408 21.97 0.551 0.459 21.71 0.533 0.440 22.63 0.580 0.416
TMPD 23.18 0.604 0.423 18.67 0.477 0.543 20.90 0.502 0.514 21.88 0.548 0.480
Peng Convert 23.74 0.638 0.358 24.89 0.706 0.332 22.36 0.570 0.407 23.46 0.625 0.379
Peng Analytic 23.73 0.637 0.358 24.67 0.694 0.345 22.36 0.570 0.407 23.46 0.625 0.379
DDNM+ 8.77 0.054 0.786 28.28 0.809 0.278 – – – 23.55 0.630 0.450
DiffPIR 21.88 0.527 0.410 15.69 0.241 0.672 18.95 0.345 0.529 20.78 0.485 0.451

Identity 23.11 0.596 0.361 19.66 0.439 0.528 19.72 0.358 0.501 23.04 0.594 0.384
Identity+online 23.43 0.616 0.373 19.65 0.420 0.538 20.77 0.459 0.447 23.08 0.599 0.403
FH 23.24 0.613 0.346 25.71 0.755 0.233 21.35 0.510 0.407 23.03 0.604 0.364
FH+online 23.32 0.616 0.356 25.73 0.764 0.243 21.37 0.509 0.417 23.17 0.609 0.370
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Figure 5. Results with the Euler solver. Our model performs especially well at small

step sizes and remains competitive at larger step counts as well.
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