Robust Classification by Coupling Data Mollification with Label Smoothing

Markus Heinonen¹ ¹Aalto University

Ba-Hien Tran² Michael Kampffmeyer ³ Maurizio Filippone⁴

²Huawei Paris Research Center ³UiT The Arctic University of Norway ⁴KAUST

Overview

- We propose **Supervised Mollification**: training a classifier under **noisy input** and smoothed label augmentation
- We present a probabilistic model of mollification by **Dirichlet tempering**
- We demonstrate **improved calibration** and performance in image classification

Augmentations and smoothing

- Augmentations are key to achieve high accuracy on image classification [3]
- Label smoothing relaxes the cross-entropy loss
- What's the connection between augmentations and label smoothing?

Illustration

Figure 4. Mollification augments training with perturbed images (a) and smoothed labels (c) according to the schedule (d), which results in predictions whose distribution matches label uncertainty (e).

Figure 1. Common training-time augmentations [2].

Probabilistic augmentation model

Likelihood Given data $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\} \stackrel{\text{iid}}{\sim} p(\mathbf{x}, \mathbf{y})$ and transformations $T_{\phi}(\mathbf{x})$ with parameters ϕ we assume a likelihood,

$$\mathcal{L} = \log p(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \int p(\mathbf{y}_n | \mathbf{x}_n, \phi, \theta) p(\phi) d\phi$$
(1)
$$\geq \sum_{n=1}^{N} \int \log p(\mathbf{y}_n | \mathbf{x}_n, \phi, \theta) p(\phi) d\phi,$$
(2)

Results

Figure 5. Common test-time corruptions [1].

			noise			blur					weather				digital				
		clean	shot	impulse	gauss	motion	zoom	defocus	glass	fog	frost	snow	bright	jpg	pixel	elastic	contrast	mean	
CIFAR10	FCR+TrivAug	3.4	23	13	31	10.0	6.2	5.5	12	6.3	12	9.3	3.9	16	21	7.4	4.4	12	
	+ Diffusion	3.4	5.7	7.3	6.4	9.4	6.6	5.8	10	6.8	8.4	8.6	4.0	12	15	7.2	4.9	7.6	
	+ Blur	3.5	20	17	27	8.1	4.8	4.1	11	6.4	11	9.2	4.0	17	18	6.5	4.7	11	
	+ Diffusion+Blur	4.0	6.2	7.5	6.8	8.8	5.0	4.6	10	7.1	8.5	9.1	4.5	14	16	6.7	5.3	7.8	
CIFAR100	FCR+TrivAug	20	54	39	63	32	28	25	38	30	41	33	23	47	47	30	25	36	
	+ Diffusion	20	25	30	26	32	29	27	34	31	34	32	23	37	36	29	26	29	
	+ Blur	20	45	40	51	28	23	21	33	29	36	31	22	46	36	26	25	32	
	+ Diffusion+Blur	20	25	31	26	28	23	22	32	30	33	31	23	39	32	27	25	28	

where θ are the predictive parameters. We argue that any transformation T can degrade the true label \mathbf{y} .

FCR+TrivAug 68 + Diffusion 62 78 68 55 55 53 52 + Blur 57 58 64 68 56 56 50 59 33 60 51 49 49 69 + Diffusion+Blur 57 57 63 56 54 59 50 57 32 50 49 68 49

Table 1. pResNet-50 network errors over test-time corruptions.

Input mollification

We repurpose the noising and blurring processes of diffusion models for augmentation.

Noising We assume cosine noising schedule

$$\mathbf{x}_{t}^{\text{noise}} = \cos(t\pi/2)\mathbf{x} + \sin(t\pi/2)\boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, I), \tag{3}$$

with temperature $t \in [0, 1]$.

Blurring We follow blurring

$$\mathbf{x}_{t}^{\text{blur}} = \mathbf{V} \exp\left(-\tau(t)\mathbf{\Lambda}\right) \mathbf{V}^{T} \mathbf{x},\tag{4}$$

- 60

- 20

1.0

where V is a discrete cosine transform (DCT), and Λ are inverse square frequencies $[\mathbf{\Lambda}]_{wh} = \pi^2 (rac{w^2}{W^2} + rac{h^2}{H^2}).$

Figure 2. Blurring sequence.

Figure 6. Mollification improves augmented models over corruption severities.

Label smoothing

We consider label degradation by temperature t,

•	Corr	× blur	- T -	digital	J	•	Corr		blur	- - - -	digital	•	Corr	~	blur	- T .	digital
	(a) Mollification type					(b) Amo	oun	t of mo	ollifica	ation	(c)	Label	smc	othing	sche	edule

Figure 7. Combining substantial amounts of noising and blurring with greedy label smoothing yields good results.

- [1] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. In ICLR, 2019.
- [2] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In ICLR, 2020.
- [3] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in timm. In NeurIPS workshop on ImageNet PPF, 2021.