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Overview

We extend log pt(xt) estimation in diffusion models to stochastic sampling;

High-density regions are easily sampled from;

Highest-density regions contain blurry images and cartoons - even though

there are no such examples in the training data!

Density estimation in stochastic diffusion models

For a diffusion model

dxt = f (t)xtdt + g(t)dWt

it is known that [1]:
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Our novel result:
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which only requires a single evaluation of the score and no

higher order derivatives !

Figure 1. Our novel augmented SDE allows for density tracking for no extra cost.

Watch out for the bias!

When we approximate sθ(t, x) ≈ ∇ log pt(x), we have pSDE
t 6= pODE

t , and:

Equation 1 correctly estimates log pODE
0 (x0);

Equation 2 provides a biased estimate r0 = log pSDE
0 (x0) + X , where
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Finding highest-density regions

How to estimate the denoising mode?

arg max
x0

p0|t(x0|xt) =? (4)

We approach this by finding the

mode-tracking curve starting at (t, xt)

ys := arg max
xs

ps|t(xs|xt). (5)

The mode-tracking curve is analytically

obtainable! We show that Figure 2. Mode-tracking curve.
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ys = f (s)ys − g2(s)∇ log ps(ys) + H(s, ys)︸ ︷︷ ︸

expensive

. (6)

We use Eq (2) to show that H(s, y) = 0 yields extremely high-density samples.

Visualizing highest-density regions

Figure 3. Highest density images resemble cartoon drawings.

Figure 4. log p0(x0) estimates correlates with amount of detail.

Figure 5. Adding blur to an image monotonically increases its estimated density.

What does log-density measure?

Why are highest-density regions

occupied by unnatural images? It is

known that generative models can

assign higher densities to OOD than

training data [2], so it does not measure

in-distributionness.

Model’s OOD freedom

The model only sees in-distribution

examples during training. It is

unconstrained in how it extrapolates to

irregular examples.

Figure 6. Log-density correlates with

information content (.png size)

Information theory and compressibility

Information theory suggests that high-likelihood images should be more com-

pressible, which translates to low-detail in the context of images. The highest-

likelihood images are low-detail, simple, and lacking in complex textures, which

makes them look like cartoons or appear blurry.

Density trade-off

The set of realistic images is vast. Some are high-detail, while others are low-

detail, but the total number of high-detail images is significantly greater due to

their higher number of degrees of freedom. Since probability density must inte-

grate to 1, this forces the model to assign lower likelihood to high-detail images

simply because there are so many of them.

High-dimensional high-density ”paradoxes”

The fact that the highest-density points look very different from regular samples

is not unusual in high-dimensional probability distributions. In the standard D-

dimensional Gaussian, the mode is at the origin, but as dimensionality increases,

almost all samples are concentrated on a thin spherical shell at radius
√

D. Sim-

ilarly, in diffusion models, the most frequently sampled (realistic) images form a

high-dimensional structure away from the peak density points.

More on our blog

More images and animations

Follow-up work: Density Guidance
Log-density estimation to arbitrary sampling paths;

Explicit control of log p0(x0) even for stochastic sampling!

Theoretical analysis of temperature scaling through the

lens of log-density
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